Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Nat Commun ; 15(1): 3031, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589411

RESUMEN

Hepatoblastomas (HB) display heterogeneous cellular phenotypes that influence the clinical outcome, but the underlying mechanisms are poorly understood. Here, we use a single-cell multiomic strategy to unravel the molecular determinants of this plasticity. We identify a continuum of HB cell states between hepatocytic (scH), liver progenitor (scLP) and mesenchymal (scM) differentiation poles, with an intermediate scH/LP population bordering scLP and scH areas in spatial transcriptomics. Chromatin accessibility landscapes reveal the gene regulatory networks of each differentiation pole, and the sequence of transcription factor activations underlying cell state transitions. Single-cell mapping of somatic alterations reveals the clonal architecture of each tumor, showing that each genetic subclone displays its own range of cellular plasticity across differentiation states. The most scLP subclones, overexpressing stem cell and DNA repair genes, proliferate faster after neo-adjuvant chemotherapy. These results highlight how the interplay of clonal evolution and epigenetic plasticity shapes the potential of HB subclones to respond to chemotherapy.


Asunto(s)
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Plasticidad de la Célula/genética , Multiómica , Evolución Clonal/genética
2.
Blood Adv ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38513088

RESUMEN

Bispecific T cell engagers (TCE) are revolutionizing patient care in multiple myeloma (MM). These monoclonal antibodies, that redirect T cells against cancer cells, are now approved for the treatment of triple-class exposed relapsed refractory multiple myeloma (RRMM). They are currently tested in earlier lines of the disease, including in first line. Yet, primary resistance occurs in about one third of RRMM patients, and most responders eventually develop acquired resistance. Understanding the mechanisms of resistance to bispecific TCE is thus essential to improve immunotherapies in MM. Here, we review recent studies investigating the clinical and molecular determinants of resistance to bispecific TCE. Resistance can arise from tumor-intrinsic or tumor-extrinsic mechanisms. Tumor-intrinsic resistance involves various alterations leading to the loss of the target antigen such as chromosome deletions, point mutations or epigenetic silencing. Loss of MHC class I, preventing MHC class I:TCR co-stimulatory signaling, was also reported. Tumor-extrinsic resistance involves abundant exhausted T cell clones and several factors generating an immunosuppressive microenvironment. Importantly, some resistance mechanisms impair response to one TCE while preserving the efficacy of others. We next discuss the clinical implications of these findings. Monitoring the status of target antigens in tumor cells and their immune environment will be key to select the most appropriate TCE for each patient, and to design combination and sequencing strategies for immunotherapy in multiple myeloma.

3.
Nat Commun ; 14(1): 7122, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932266

RESUMEN

Pediatric liver tumors are very rare tumors with the most common diagnosis being hepatoblastoma. While hepatoblastomas are predominantly sporadic, around 15% of cases develop as part of predisposition syndromes such as Beckwith-Wiedemann (11p15.5 locus altered). Here, we identify mosaic genetic alterations of 11p15.5 locus in the liver of hepatoblastoma patients without a clinical diagnosis of Beckwith-Wiedemann syndrome. We do not retrieve these alterations in children with other types of pediatric liver tumors. We show that mosaic 11p15.5 alterations in liver FFPE sections of hepatoblastoma patients display IGF2 overexpression and H19 downregulation together with an alteration of the liver zonation. Moreover, mosaic livers' microenvironment is enriched in extracellular matrix and angiogenesis. Spatial transcriptomics and single-nucleus RNAseq analyses identify a 60-gene signature in 11p15.5 altered hepatocytes. These data provide insights for 11p15.5 mosaicism detection and its functional consequences during the early steps of carcinogenesis.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Hepatoblastoma , Neoplasias Hepáticas , Humanos , Niño , Preescolar , Hepatoblastoma/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/patología , Neoplasias Hepáticas/genética , Mosaicismo , Metilación de ADN , Impresión Genómica , Microambiente Tumoral
5.
Nat Cancer ; 4(11): 1536-1543, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37653140

RESUMEN

Bispecific antibodies targeting GPRC5D demonstrated promising efficacy in multiple myeloma, but acquired resistance usually occurs within a few months. Using a single-nucleus multi-omic strategy in three patients from the MYRACLE cohort (ClinicalTrials.gov registration: NCT03807128 ), we identified two resistance mechanisms, by bi-allelic genetic inactivation of GPRC5D or by long-range epigenetic silencing of its promoter and enhancer regions. Molecular profiling of target genes may help to guide the choice of immunotherapy and early detection of resistance in multiple myeloma.


Asunto(s)
Anticuerpos Biespecíficos , Mieloma Múltiple , Humanos , Anticuerpos Biespecíficos/uso terapéutico , Epigénesis Genética , Inmunoterapia/métodos , Mieloma Múltiple/genética , Mieloma Múltiple/terapia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/inmunología , Linfocitos T
6.
NAR Cancer ; 5(2): zcad014, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36937541

RESUMEN

Somatic mutations can disrupt splicing regulatory elements and have dramatic effects on cancer genes, yet the functional consequences of mutations located in extended splice regions is difficult to predict. Here, we use a deep neural network (SpliceAI) to characterize the landscape of splice-altering mutations in cancer. In our in-house series of 401 liver cancers, SpliceAI uncovers 1244 cryptic splice mutations, located outside essential splice sites, that validate at a high rate (66%) in matched RNA-seq data. We then extend the analysis to a large pan-cancer cohort of 17 714 tumors, revealing >100 000 cryptic splice mutations. Taking into account these mutations increases the power of driver gene discovery, revealing 126 new candidate driver genes. It also reveals new driver mutations in known cancer genes, doubling the frequency of splice alterations in tumor suppressor genes. Mutational signature analysis suggests mutational processes that could give rise preferentially to splice mutations in each cancer type, with an enrichment of signatures related to clock-like processes and DNA repair deficiency. Altogether, this work sheds light on the causes and impact of cryptic splice mutations in cancer, and highlights the power of deep learning approaches to better annotate the functional consequences of mutations in oncology.

7.
Clin Cancer Res ; 28(20): 4509-4520, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-35998012

RESUMEN

PURPOSE: Mongolia has the world's highest incidence of hepatocellular carcinoma (HCC), with ∼100 cases/100,000 inhabitants, although the reasons for this have not been thoroughly delineated. EXPERIMENTAL DESIGN: We performed a molecular characterization of Mongolian (n = 192) compared with Western (n = 187) HCCs by RNA sequencing and whole-exome sequencing to unveil distinct genomic and transcriptomic features associated with environmental factors in this population. RESULTS: Mongolian patients were younger, with higher female prevalence, and with predominantly HBV-HDV coinfection etiology. Mongolian HCCs presented significantly higher rates of protein-coding mutations (121 vs. 70 mutations per tumor in Western), and in specific driver HCC genes (i.e., APOB and TSC2). Four mutational signatures characterized Mongolian samples, one of which was novel (SBS Mongolia) and present in 25% of Mongolian HCC cases. This signature showed a distinct substitution profile with a high proportion of T>G substitutions and was significantly associated with a signature of exposure to the environmental agent dimethyl sulfate (71%), a 2A carcinogenic associated with coal combustion. Transcriptomic-based analysis delineated three molecular clusters, two not present in Western HCC; one with a highly inflamed profile and the other significantly associated with younger female patients. CONCLUSIONS: Mongolian HCC has unique molecular traits with a high mutational burden and a novel mutational signature associated with genotoxic environmental factors present in this country.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Apolipoproteínas B/genética , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/genética , Carbón Mineral , Femenino , Humanos , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/genética , Mongolia/epidemiología , Mutación
8.
J Hepatol ; 77(4): 1038-1046, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35636578

RESUMEN

BACKGROUND & AIMS: Acute intermittent porphyria (AIP), caused by heterozygous germline mutations of the heme synthesis pathway enzyme HMBS (hydroxymethylbilane synthase), confers a high risk of hepatocellular carcinoma (HCC) development. Yet, the role of HMBS in liver tumorigenesis remains unclear. METHODS: Herein, we explore HMBS alterations in a large series of 758 HCC cases, including 4 patients with AIP. We quantify the impact of HMBS mutations on heme biosynthesis pathway intermediates and we investigate the molecular and clinical features of HMBS-mutated tumors. RESULTS: We identify recurrent bi-allelic HMBS inactivation, both in patients with AIP acquiring a second somatic HMBS mutation and in sporadic HCC with 2 somatic hits. HMBS alterations are enriched in truncating mutations, in particular in splice regions, leading to abnormal transcript structures. Bi-allelic HMBS inactivation results in a massive accumulation of its toxic substrate porphobilinogen and synergizes with CTNNB1-activating mutations, leading to the development of well-differentiated tumors with a transcriptomic signature of Wnt/ß-catenin pathway activation and a DNA methylation signature related to ageing. HMBS-inactivated HCC mostly affects females, in the absence of fibrosis and classical HCC risk factors. CONCLUSIONS: These data identify HMBS as a tumor suppressor gene whose bi-allelic inactivation defines a homogenous clinical and molecular HCC subtype. LAY SUMMARY: Heme (the precursor to hemoglobin, which plays a key role in oxygen transport around the body) synthesis occurs in the liver and involves several enzymes including hydroxymethylbilane synthase (HMBS). HMBS mutations cause acute intermittent porphyria, a disease caused by the accumulation of toxic porphyrin precursors. Herein, we show that HMBS inactivation is also involved in the development of liver cancers with distinct clinical and molecular characteristics.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Porfiria Intermitente Aguda , Carcinoma Hepatocelular/complicaciones , Carcinoma Hepatocelular/genética , Femenino , Hemo , Humanos , Hidroximetilbilano Sintasa/genética , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/genética , Mutación , Oxígeno , Porfobilinógeno , Porfiria Intermitente Aguda/etiología , Porfiria Intermitente Aguda/genética , beta Catenina/genética
9.
Cancer Res ; 82(8): 1470-1481, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35395067

RESUMEN

Oncogene activation leads to replication stress and promotes genomic instability. Here we combine optical mapping and whole-genome sequencing (WGS) to explore in depth the nature of structural variants (SV) induced by replication stress in cyclin-activated hepatocellular carcinomas (CCN-HCC). In addition to classical tandem duplications, CCN-HCC displayed frequent intra-chromosomal and interchromosomal templated insertion cycles (TIC), likely resulting from template switching events. Template switching preferentially involves active topologically associated domains that are proximal to one another within the 3D genome. Template sizes depend on the type of cyclin activation and are coordinated within each TIC. Replication stress induced continuous accumulation of SVs during CCN-HCC progression, fostering the acquisition of new driver alterations and large-scale copy-number changes at TIC borders. Together, this analysis sheds light on the mechanisms, dynamics, and consequences of SV accumulation in tumors with oncogene-induced replication stress. SIGNIFICANCE: Optical mapping and whole-genome sequencing integration unravels a unique signature of replication stress-induced structural variants that drive genomic evolution and the acquisition of driver events in CCN-HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Ciclinas , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Oncogenes , Secuenciación Completa del Genoma
10.
Nat Genet ; 54(4): 459-468, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35410383

RESUMEN

The persistence of cancer cells resistant to therapy remains a major clinical challenge. In triple-negative breast cancer, resistance to chemotherapy results in the highest recurrence risk among breast cancer subtypes. The drug-tolerant state seems largely defined by nongenetic features, but the underlying mechanisms are poorly understood. Here, by monitoring epigenomes, transcriptomes and lineages with single-cell resolution, we show that the repressive histone mark H3K27me3 (trimethylation of histone H3 at lysine 27) regulates cell fate at the onset of chemotherapy. We report that a persister expression program is primed with both H3K4me3 (trimethylation of histone H3 at lysine 4) and H3K27me3 in unchallenged cells, with H3K27me3 being the lock to its transcriptional activation. We further demonstrate that depleting H3K27me3 enhances the potential of cancer cells to tolerate chemotherapy. Conversely, preventing H3K27me3 demethylation simultaneously to chemotherapy inhibits the transition to a drug-tolerant state, and delays tumor recurrence in vivo. Our results highlight how chromatin landscapes shape the potential of cancer cells to respond to initial therapy.


Asunto(s)
Resistencia a Antineoplásicos , Histonas , Neoplasias de la Mama Triple Negativas , Resistencia a Antineoplásicos/genética , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación , Recurrencia Local de Neoplasia , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética
11.
Lung Cancer ; 167: 98-106, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35183375

RESUMEN

INTRODUCTION: Among the different mechanisms of acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) reported in EGFR-mutated lung adenocarcinoma (EGFR-LUAD) patients, histological transformation into small cell carcinoma (SCLC) occurs in 3-14% of resistant cases, regardless of the generation of EGFR-TKI. In recent studies, bi-allelic inactivation of TP53 and RB1 has been identified in a vast majority of transformed SCLCs. However, the molecular mechanisms driving this histologic transformation remain largely unknown, mainly due to the rarity of samples. PATIENTS AND METHODS: Out of an initial cohort of 64 patients, tumor tissues of adequate quality and quantity for whole exome sequencing (WES) analysis were available for nine tumors for six patients: paired pre- and post-SCLC transformation samples for three Patients and post-SCLC transformation samples for three other patients. RESULTS: Mutational analyses showed concurrent TP53 mutations and Rb pathway alterations in five of the six patients analyzed, confirming their suggested role as predisposing genetic alterations to SCLC transformation. In addition, TERT amplification was detected in four of the six patients and found to be an event acquired during SCLC transformation. Clonal history evolution analyses from the paired LUAD/SCLC samples showed different evolution patterns. In two patients, a large proportion of mutations were present in the most recent common ancestor cell of the initial LUAD and the transformed SCLC clones, whereas in the third patient, few clonal mutations were common between the LUAD and SCLC samples and the ancestor clone that lead to SCLC was present at low frequency in the initial LUAD. CONCLUSION: Despite varied clinical presentations and clonal history evolution patterns, in addition to p53 and Rb pathways alterations, TERT amplification emerged as another common genetic mechanism of EGFR-LUAD to SCLC transformation in our cohort, and could represent a candidate therapeutic target in this subset of SCLC tumors.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Células Pequeñas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Telomerasa , Adenocarcinoma del Pulmón/patología , Carcinoma de Células Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/patología , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteína de Retinoblastoma/metabolismo , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Telomerasa/genética , Telomerasa/uso terapéutico , Proteína p53 Supresora de Tumor/genética
12.
Hepatology ; 75(4): 997-1011, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34478159

RESUMEN

BACKGROUND AND AIMS: Despite the epidemiological association between intrahepatic cholangiocarcinoma (iCCA) and HBV infection, little is known about the relevant oncogenic effects. We sought to identify the landscape and mechanism of HBV integration, along with the genomic architecture of HBV-infected iCCA (HBV-iCCA) tumors. APPROACH AND RESULTS: We profiled a cohort of 108 HBV-iCCAs using whole-genome sequencing, deep sequencing, and RNA sequencing, together with preconstructed data sets of HBV-infected HCC (HBV-HCC; n = 167) and combined hepatocellular cholangiocarcinoma (HBV-cHCC/CCA; n = 59), and conventional (n = 154) and fluke-related iCCAs (n = 16). Platforms based on primary iCCA cell lines to evaluate the functional effects of chimeric transcripts were also used. We found that HBV had inserted at multiple sites in the iCCA genomes in 45 (41.7%) of the tumors. Recurrent viral integration breakpoints were found at nine different sites. The most common insertional hotspot (7 tumors) was in the TERT (telomerase reverse transcriptase) promoter, where insertions and mutations (11 tumors) were mutually exclusive, and were accompanied by promoter hyperactivity. Recurrent HBV integration events (5 tumors) were also detected in FAT2 (FAT atypical cadherin 2), and were associated with enrichment of epithelial-mesenchymal transition-related genes. A distinctive intergenic insertion (chr9p21.3), between DMRTA1 (DMRT like family A1) and LINC01239 (long intergenic non-protein coding RNA 1239), had oncogenic effects through activation of the mammalian target of rapamycin (mTOR)/4EBP/S6K pathway. Regarding the mutational profiles of primary liver cancers, the overall landscape of HBV-iCCA was closer to that of nonviral conventional iCCA, than to HBV-HCC and HBV-cHCC/CCA. CONCLUSIONS: Our findings provide insight into the behavior of iCCAs driven by various pathogenic mechanisms involving HBV integration events and associated genomic aberrations. This knowledge should be of use in managing HBV carriers.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Carcinogénesis , Carcinoma Hepatocelular/patología , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Genómica , Virus de la Hepatitis B/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Integración Viral/genética
13.
Gut ; 71(3): 616-626, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33563643

RESUMEN

OBJECTIVE: Infection by HBV is the main risk factor for hepatocellular carcinoma (HCC) worldwide. HBV directly drives carcinogenesis through integrations in the human genome. This study aimed to precisely characterise HBV integrations, in relation with viral and host genomics and clinical features. DESIGN: A novel pipeline was set up to perform viral capture on tumours and non-tumour liver tissues from a French cohort of 177 patients mainly of European and African origins. Clonality of each integration event was determined with the localisation, orientation and content of the integrated sequence. In three selected tumours, complex integrations were reconstructed using long-read sequencing or Bionano whole genome mapping. RESULTS: Replicating HBV DNA was more frequently detected in non-tumour tissues and associated with a higher number of non-clonal integrations. In HCC, clonal selection of HBV integrations was related to two different mechanisms involved in carcinogenesis. First, integration of viral enhancer nearby a cancer-driver gene may lead to a strong overexpression of oncogenes. Second, we identified frequent chromosome rearrangements at HBV integration sites leading to cancer-driver genes (TERT, TP53, MYC) alterations at distance. Moreover, HBV integrations have direct clinical implications as HCC with a high number of insertions develop in young patients and have a poor prognosis. CONCLUSION: Deep characterisation of HBV integrations in liver tissues highlights new HBV-associated driver mechanisms involved in hepatocarcinogenesis. HBV integrations have multiple direct oncogenic consequences that remain an important challenge for the follow-up of HBV-infected patients.


Asunto(s)
Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Virus de la Hepatitis B/fisiología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Integración Viral/fisiología , Carcinogénesis , Estudios de Casos y Controles , Estudios de Cohortes , ADN Viral/aislamiento & purificación , Femenino , Virus de la Hepatitis B/aislamiento & purificación , Humanos , Masculino
14.
Lancet Oncol ; 23(1): 161-171, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34902334

RESUMEN

BACKGROUND: Hepatocellular carcinoma is a frequent consequence of alcohol-related liver disease, with variable incidence among heavy drinkers. We did a genome-wide association study (GWAS) to identify common genetic variants for alcohol-related hepatocellular carcinoma. METHODS: We conducted a two-stage case-control GWAS in a discovery cohort of 2107 unrelated European patients with alcohol-related liver disease aged 20-92 years recruited between Oct 22, 1993, and March 12, 2017. Cases were patients with alcohol-related hepatocellular carcinoma diagnosed by imaging or histology. Controls were patients with alcohol-related liver disease without hepatocellular carcinoma. We used an additive logistic regression model adjusted for the first ten principal components to assess genetic variants associated with alcohol-related hepatocellular carcinoma. We did another analysis with adjustment for age, sex, and liver fibrosis. New candidate associations (p<1 × 10-6) and variants previously associated with alcohol-related hepatocellular carcinoma were evaluated in a validation cohort of 1933 patients with alcohol-related liver disease aged 29-92 years recruited between July 21, 1995, and May 2, 2019. We did a meta-analysis of the two case-control cohorts. FINDINGS: The discovery cohort included 775 cases and 1332 controls. Of 7 962 325 variants assessed, we identified WNT3A-WNT9A (rs708113; p=1·11 × 10-8) and found support for previously reported regions associated with alcohol-related hepatocellular carcinoma risk at TM6SF2 (rs58542926; p=6·02 × 10-10), PNPLA3 (rs738409; p=9·29 × 10-7), and HSD17B13 (rs72613567; p=2·49 × 10-4). The validation cohort included 874 cases and 1059 controls and three variants were replicated: WNT3A-WNT9A (rs708113; p=1·17 × 10-3), TM6SF2 (rs58542926; p=4·06 × 10-5), and PNPLA3 (rs738409; p=1·17 × 10-4). All three variants reached GWAS significance in the meta-analysis: WNT3A-WNT9A (odds ratio 0·73, 95% CI 0·66-0·81; p=3·93 × 10-10), TM6SF2 (1·77, 1·52-2·07; p=3·84×10-13), PNPLA3 (1·34, 1·22-1·47; p=7·30 × 10-10). Adjustment for clinical covariates yielded similar results. We observed an additive effect of at-risk alleles on alcohol-related hepatocellular carcinoma. WNT3A-WNT9A rs708113 was not associated with liver fibrosis. INTERPRETATION: WNT3A-WNT9A is a susceptibility locus for alcohol-related hepatocellular carcinoma, suggesting an early role of the Wnt-ß-catenin pathway in alcohol-related hepatocellular carcinoma carcinogenesis. FUNDING: Ligue Nationale contre le Cancer, Bpifrance, INSERM, AFEF, CARPEM, Labex OncoImmunology, and Agence Nationale de la Recherche.


Asunto(s)
Trastornos Relacionados con Alcohol/genética , Carcinoma Hepatocelular/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Neoplasias Hepáticas/genética , Aciltransferasas/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Variación Genética , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Fosfolipasas A2 Calcio-Independiente/genética , Polimorfismo de Nucleótido Simple , Proteínas Wnt/genética , Proteína Wnt3A/genética , Adulto Joven
15.
Genet Med ; 24(2): 374-383, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34906447

RESUMEN

PURPOSE: This study aimed to investigate the genetic cause of food-dependent Cushing syndrome (FDCS) observed in patients with primary bilateral macronodular adrenal hyperplasia (PBMAH) and adrenal ectopic expression of the glucose-dependent insulinotropic polypeptide receptor. Germline ARMC5 alterations have been reported in about 25% of PBMAH index cases but are absent in patients with FDCS. METHODS: A multiomics analysis of PBMAH tissues from 36 patients treated by adrenalectomy was performed (RNA sequencing, single-nucleotide variant array, methylome, miRNome, exome sequencing). RESULTS: The integrative analysis revealed 3 molecular groups with different clinical features, namely G1, comprising 16 patients with ARMC5 inactivating variants; G2, comprising 6 patients with FDCS with glucose-dependent insulinotropic polypeptide receptor ectopic expression; and G3, comprising 14 patients with a less severe phenotype. Exome sequencing revealed germline truncating variants of KDM1A in 5 G2 patients, constantly associated with a somatic loss of the KDM1A wild-type allele on 1p, leading to a loss of KDM1A expression both at messenger RNA and protein levels (P = 1.2 × 10-12 and P < .01, respectively). Subsequently, KDM1A pathogenic variants were identified in 4 of 4 additional index cases with FDCS. CONCLUSION: KDM1A inactivation explains about 90% of FDCS PBMAH. Genetic screening for ARMC5 and KDM1A can now be offered for most PBMAH operated patients and their families, opening the way to earlier diagnosis and improved management.


Asunto(s)
Síndrome de Cushing , Proteínas del Dominio Armadillo/genética , Síndrome de Cushing/diagnóstico , Síndrome de Cushing/genética , Síndrome de Cushing/cirugía , Histona Demetilasas/genética , Humanos , Hiperplasia , Fenotipo
16.
Nat Commun ; 12(1): 5578, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34552068

RESUMEN

Retinoblastoma is the most frequent intraocular malignancy in children, originating from a maturing cone precursor in the developing retina. Little is known on the molecular basis underlying the biological and clinical behavior of this cancer. Here, using multi-omics data, we demonstrate the existence of two retinoblastoma subtypes. Subtype 1, of earlier onset, includes most of the heritable forms. It harbors few genetic alterations other than the initiating RB1 inactivation and corresponds to differentiated tumors expressing mature cone markers. By contrast, subtype 2 tumors harbor frequent recurrent genetic alterations including MYCN-amplification. They express markers of less differentiated cone together with neuronal/ganglion cell markers with marked inter- and intra-tumor heterogeneity. The cone dedifferentiation in subtype 2 is associated with stemness features including low immune and interferon response, E2F and MYC/MYCN activation and a higher propensity for metastasis. The recognition of these two subtypes, one maintaining a cone-differentiated state, and the other, more aggressive, associated with cone dedifferentiation and expression of neuronal markers, opens up important biological and clinical perspectives for retinoblastomas.


Asunto(s)
Células Fotorreceptoras Retinianas Conos/patología , Células Ganglionares de la Retina/metabolismo , Neoplasias de la Retina/clasificación , Retinoblastoma/clasificación , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Desdiferenciación Celular/genética , Preescolar , Metilación de ADN , Femenino , Expresión Génica , Heterogeneidad Genética , Humanos , Lactante , Masculino , Mutación , Proteína Proto-Oncogénica N-Myc/genética , Metástasis de la Neoplasia , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Ganglionares de la Retina/patología , Neoplasias de la Retina/genética , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/patología , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patología
17.
Genome Med ; 13(1): 113, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34261524

RESUMEN

BACKGROUND: Malignant pleural mesothelioma (MPM) is a heterogeneous cancer. Better knowledge of molecular and cellular intra-tumor heterogeneity throughout the thoracic cavity is required to develop efficient therapies. This study focuses on molecular intra-tumor heterogeneity using the largest series to date in MPM and is the first to report on the multi-omics profiling of a substantial series of multi-site tumor samples. METHODS: Intra-tumor heterogeneity was investigated in 16 patients from whom biopsies were taken at distinct anatomical sites. The paired biopsies collected from apex, side wall, costo-diaphragmatic, or highest metabolic sites as well as 5 derived cell lines were screened using targeted sequencing. Whole exome sequencing, RNA sequencing, and DNA methylation were performed on a subset of the cohort for deep characterization. Molecular classification, recently defined histo-molecular gradients, and cell populations of the tumor microenvironment were assessed. RESULTS: Sequencing analysis identified heterogeneous variants notably in NF2, a key tumor suppressor gene of mesothelial carcinogenesis. Subclonal tumor populations were shared among paired biopsies, suggesting a polyclonal dissemination of the tumor. Transcriptome analysis highlighted dysregulation of cell adhesion and extracellular matrix pathways, linked to changes in histo-molecular gradient proportions between anatomic sites. Methylome analysis revealed the contribution of epigenetic mechanisms in two patients. Finally, significant changes in the expression of immune mediators and genes related to immunological synapse, as well as differential infiltration of immune populations in the tumor environment, were observed and led to a switch from a hot to a cold immune profile in three patients. CONCLUSIONS: This comprehensive analysis reveals patient-dependent spatial intra-tumor heterogeneity at the genetic, transcriptomic, and epigenetic levels and in the immune landscape of the tumor microenvironment. Results support the need for multi-sampling for the implementation of molecular-based precision medicine.


Asunto(s)
Biomarcadores de Tumor , Mesotelioma Maligno/etiología , Neoplasias Pleurales/etiología , Biopsia , Biología Computacional/métodos , Análisis Mutacional de ADN/métodos , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Heterogeneidad Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mesotelioma Maligno/diagnóstico , Mesotelioma Maligno/metabolismo , Técnicas de Diagnóstico Molecular , Anotación de Secuencia Molecular , Mutación , Neoplasias Pleurales/diagnóstico , Neoplasias Pleurales/metabolismo , Medicina de Precisión/métodos , Medicina de Precisión/normas , Pronóstico , Microambiente Tumoral/genética , Secuenciación del Exoma
19.
Cancer Res ; 81(13): 3480-3494, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34127497

RESUMEN

Succinate dehydrogenase is a key enzyme in the tricarboxylic acid cycle and the electron transport chain. All four subunits of succinate dehydrogenase are tumor suppressor genes predisposing to paraganglioma, but only mutations in the SDHB subunit are associated with increased risk of metastasis. Here we generated an Sdhd knockout chromaffin cell line and compared it with Sdhb-deficient cells. Both cell types exhibited similar SDH loss of function, metabolic adaptation, and succinate accumulation. In contrast, Sdhb-/- cells showed hallmarks of mesenchymal transition associated with increased DNA hypermethylation and a stronger pseudo-hypoxic phenotype compared with Sdhd-/- cells. Loss of SDHB specifically led to increased oxidative stress associated with dysregulated iron and copper homeostasis in the absence of NRF2 activation. High-dose ascorbate exacerbated the increase in mitochondrial reactive oxygen species, leading to cell death in Sdhb-/- cells. These data establish a mechanism linking oxidative stress to iron homeostasis that specifically occurs in Sdhb-deficient cells and may promote metastasis. They also highlight high-dose ascorbate as a promising therapeutic strategy for SDHB-related cancers. SIGNIFICANCE: Loss of different succinate dehydrogenase subunits can lead to different cell and tumor phenotypes, linking stronger 2-OG-dependent dioxygenases inhibition, iron overload, and ROS accumulation following SDHB mutation.


Asunto(s)
Ácido Ascórbico/farmacología , Homeostasis , Hierro/metabolismo , Mutación , Estrés Oxidativo , Succinato Deshidrogenasa/fisiología , Animales , Antioxidantes/farmacología , Dioxigenasas/antagonistas & inhibidores , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Fenotipo , Especies Reactivas de Oxígeno
20.
Cancer Discov ; 11(10): 2524-2543, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33893148

RESUMEN

Pediatric liver cancers (PLC) comprise diverse diseases affecting infants, children, and adolescents. Despite overall good prognosis, PLCs display heterogeneous response to chemotherapy. Integrated genomic analysis of 126 pediatric liver tumors showed a continuum of driver mechanisms associated with patient age, including new targetable oncogenes. In 10% of patients with hepatoblastoma, all before three years old, we identified a mosaic premalignant clonal expansion of cells altered at the 11p15.5 locus. Analysis of spatial and longitudinal heterogeneity revealed an important plasticity between "hepatocytic," "liver progenitor," and "mesenchymal" molecular subgroups of hepatoblastoma. We showed that during chemotherapy, "liver progenitor" cells accumulated massive loads of cisplatin-induced mutations with a specific mutational signature, leading to the development of heavily mutated relapses and metastases. Drug screening in PLC cell lines identified promising targets for cisplatin-resistant progenitor cells, validated in mouse xenograft experiments. These data provide new insights into cisplatin resistance mechanisms in PLC and suggest alternative therapies. SIGNIFICANCE: PLCs are deadly when they resist chemotherapy, with limited alternative treatment options. Using a multiomics approach, we identified PLC driver genes and the cellular phenotype at the origin of cisplatin resistance. We validated new treatments targeting these molecular features in cell lines and xenografts.This article is highlighted in the In This Issue feature, p. 2355.


Asunto(s)
Antineoplásicos/uso terapéutico , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Neoplasias Hepáticas/tratamiento farmacológico , Adolescente , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Niño , Preescolar , Femenino , Perfilación de la Expresión Génica , Genómica , Hepatoblastoma/tratamiento farmacológico , Hepatoblastoma/genética , Humanos , Lactante , Neoplasias Hepáticas/genética , Masculino , Recurrencia Local de Neoplasia , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...